数理?データサイエンス?AI 教育プログラム(リテラシーレベル)

概要:
数理?データサイエンス?AIに関する知識及び技術について、体系的に学ぶことにより、基礎的な能力の向上を図る機会を提供するプログラムです。
身に付けることのできる能力:
数理?データサイエンス?AIを適切に理解し、それを活用する基礎的な能力を身に付けることができます。
対象:
学部生(2022年度以降入学生)
履修方法:
このプログラムを履修するための特別な手続きは必要ありません。通常どおりの受講登録を行ってください。
修了要件:
工芸科学基礎1単位に加え、所属課程で開講されるデータリテラシー科目を2単位以上修得すること。
授業科目(モデルカリキュラムとの対応)
授業科目の内容は、シラバスを参照してください。
モデルカリキュラム 対応する授業科目
1.社会におけるデータ?AI利活用
1-1. 社会で起きている変化 全学共通:工芸科学基礎(1年次、1単位、選択必修)
1-2. 社会で活用されているデータ
1-3. データ?AIの活用領域
1-4. データ?AI利活用のための技術
1-5. データ?AI利活用の現場
1-6. データ?AI利活用の最新動向
2.データリテラシー
2-1. データを読む 各課程の専門基礎科目、課程専門科目
応用生物学課程:情報処理演習(1年次、2単位、必修)、生物統計学(2年次、2単位、選択必修)
応用化学課程:情報データリテラシー演習(1年次、2単位、必修)
電子システム工学課程:情報?データリテラシー(1年次、2単位、必修)
情報工学課程:情報?データリテラシー概論(1年次、2単位、必修)
機械工学課程:エンジニアのためのリテラシー(1年次、2単位、必修)
デザイン?建築学課程:情報リテラシー概論(1年次、2単位、選択必修)
2-2. データを説明する
2-3. データを扱う
3.データ?AI利活用における留意事項
3-1. データ?AIを扱う上での留意事項 全学共通:工芸科学基礎(1年次、1単位、選択必修)
3-2. データを守る上での留意事項
4. オプション
4-1. 統計および数理基礎 基礎解析I、線形代数学I、統計数理
実施体制
委員会等 役割
総合教育センター長 プログラムの運営責任者
総合教育センター運営委員会
数理?データサイエンス?AI教育プログラム検討WG
プログラムの検討、改善、自己点検?評価

自己点検?評価
京都工芸繊維大学 数理?データサイエンス?AI 教育プログラム(リテラシーレベル)自己点検?評価書
?令和4年度
?令和5年度

申請書(リテラシーレベル)
数理?データサイエンス?AI教育プログラム認定制度【リテラシーレベル】申請書(令和5年度提出)

リテラシーレベル

認定期間:令和10年3月31日まで